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Appendix A

Perturbative View of BPM data

Decomposition

Taylor expanding ’b’ over all physical variables:

b− 〈b〉 =
∑

v

∂b

∂v

∣

∣

∣

∣

v=v

(∆v − 〈∆v〉)

+
1

2

∑

v1,v2

∂2b

∂v2∂v1

∣

∣

∣

∣

v=v

(∆v1∆v2 − 〈∆v1∆v2〉)

+ . . .

where b is a function of x, x′, δ, σz and other physical physical variables.
Treating 1st and 2nd order terms the same (higher-order negligible):

b− 〈b〉 =
∑

(q)

qfq (A.1)

where

q =
∆v − 〈∆v〉
std(∆v)

(A.2)

=
∆v1∆v2 − 〈∆v1∆v2〉

std(∆v1∆v2)
, (A.3)

and

fq =
∂b

∂v

∣

∣

∣

∣

v

std(∆v) (A.4)

=
∂2b

∂v2∂v1

∣

∣

∣

∣

v1v2

std(∆v1∆v2) (A.5)

Eq. A.1 in matrix notation is simply

B = WV T (A.6)
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Appendix B

Geometric view of coupled SVD modes

Since, the SVD modes are approximately linear combinations of the spatial
eigenmodes, it is interesting to view the evolution spatial vectors for each axes
in terms of a parametric plots as shown Fig. B.1 In the absence of coupling,
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Figure B.1: Parametric plots of SVD modes of BPM data from each plane
(x-red, y-blue). Data taken using ac dipoles during Run-2004.

parametric plots should simply exhibit orthogonal lines lying on the coordinate
axes. The rotation with respect to the coordinate axes and the finite width to
the ellipses point to non-zero coupling present in the lattice.

A simple inference from these plots can be made that there are approx-
imately two angles of rotation (φ1 and φ2) by which the spatial vectors are
rotated w.r.t to each other. One can construct a simple orthogonal rotation
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matrix O4×4 given by









cos φ1 0 − sin φ1 0
0 cosφ2 0 − sinφ2

sinφ1 0 cosφ1 0
0 sin φ2 0 cosφ2









(B.1)

which will rotate the SVD modes into the physical eigenmodes Although, this
approach maybe more intuitive, one has to rely on fitting techniques to ac-
curately determine these angles. The harmonic projection is in the frequency
domain is far simpler and probably yield a numerically more accurate O ma-
trix. Nevertheless, the outcome of this parametric plots are interesting.



171

Appendix C

Coupling Matrix

C.1 Propagation of the C matrix

In a coupler free region C matrix is simply propagated by an arbitrary
phase advance in both modes which is given by [42]

C2 = Rx(φx)C1R
−1
y (φy) (C.1)

where Rx,y =

(

cosφx,y sinφx,y

− sin φx,y cosφx,y

)

.

If coupling is small and couplers modeled as thin skew quadrupoles, the C

is propagated to first order given by [50]

C2 = C1 − k (C.2)

where

k =

(

0 0

k 0

)

(C.3)

with k =
√

βskew
a βskew

b k and k is the strength of the coupler. Here γ is assumed
to be 1.

C.2 Normalized momenta

The normalized momenta p̂x,y are given by the normalized positions at a
location π/2 apart. This location does not have to correspond to any physical
location. To compute p̂x the C matrix is propagated by π/2 in the horizontal
mode and an arbitrary φy in the vertical mode

C
′
= Rx(π/2)CR

−1
y (φy)

=

(

C21cφy + C22sφy −C21sφy + C22cφy

−C11cφy − C12sφy C11sφy − C12cφy

)

. (C.4)
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where cφ = cos(φ) and sφ = sin(φ). Therefore, p̂x is obtained by using x̂ and

C
′
as the C matrix at the new location,

p̂x = γAx cos(ψx + π/2) +

Ay

(

(C21 cosφy + C22 sinφy) cos(ψy + φy) −

(−C21 sin φy + C22 cosφy) sin(ψy + φy)
)

= −γAx sinψx +

Ay

(

C21 cosψy − C22 sinψy

)

. (C.5)

Note that the arbitrary φy has canceled out and p̂x only depends on parameters
evaluated at the initial physical location. Similarly for p̂y,

p̂y = −γAy sinψy +

Ax

(

C21 cosψx + C11 sinψx

)

. (C.6)

C.3 C21 in coupler free region

Using Eq. (C.1), C matrix elements at two locations are related in terms
of the phase advance alone which is expressed as,











C
(2)
11

C
(2)
12

C
(2)
21

C
(2)
22











=









cφxcφy cφxsφy sφxcφy sφxsφy

−cφxsφy cφxcφy −sφxsφy sφxcφy

−sφxcφy −sφxsφy cφxcφy cφxsφy

sφxsφy −cφxcφy −cφxsφy cφxcφy









×











C
(1)
11

C
(1)
12

C
(1)
21

C
(1)
22











, (C.7)

where cφ = cos(φ) and sφ = sin(φ). Given two BPM locations at which
turn-by-turn data is recorded, C12/γ, C11/γ, and C22/γ are calculated as
illustrated in section 4.3.1. The phase advances between the two locations
can also be determined using SVD techniques from the same turn-by-turn
data [53]. Rearranging the second row of Eq. (C.7), C21/γ is exactly calculated
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in a coupler free region which is given by

C
(1)

21 =
(

− C
(1)

11 cosφa sin φb + C
(1)

12 cosφa sinφb

+C
(1)

22 sinφa cosφb − C
(2)

12

)

/(sinφa sinφb)

(C.8)

C.4 Skew quadrupole strength from two BPMs

Using Eq. (C.1) and (C.2), C matrix is propagated between two observa-
tion points with one skew quadrupole between them given by

C2 = Rx(φ
skew+l
x )

×
[

Rx(φ
skew−l
x )C1R

−1
y (φskew−l

y ) − k

]

×R
−1
y (φskew+l

y ) (C.9)

where φskew∓l
x,y are the phase advances between the skew quadrupole and lo-

cations 1 and and 2 respectively. Determinants are distributive (|AB| =
|A| × |B|), therefore

|C2| = |Rx(φ
skew−l
x )C1R

−1
y (φskew−l

y ) − k| (C.10)

since, |Rx(φx,y)| = 1. Using Eq. (C.7) and (C.10) k̄ is expressed as

k̄ = −|C(2)| − |C(1)|
Cskew

12

, (C.11)

which is equivalent to Eq.( 4.42) derived from RDT’s given that γ = 1.
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Appendix D

Five-Cell SRF Cavity

D.1 Bead Pull for Fundamental Mode

In this technique, a small bead (radius << λ) is introduced in the cavity
to perturb the field which changes the resonant frequency proportional to the
fields [120]. The frequency of a mode is commonly measured from scattering
parameter S21 with a network analyzer. An equivalent and sometimes more
sensitive measurement would be the phase shift of S21 at the unperturbed
resonant frequency. The S21 is given by

S21 =
2
√
β1β2

(1 + β1 + β2) + iQ0

(

ω
ω0

− ω0

ω

) (D.1)

where β1 and β2 are the coupling coefficients of input and output probes. If
coupling is weak (β1, β2 << 1) and ∆ω/ω << 1. then the change in frequency
can be expressed as

δω

ω0
≈ − 1

2QL
tan(φ) (D.2)

For spherical bead:

δω

ω0
=

{

−πr3

U
(ǫ0

ǫr+2
ǫr−1

E2
0) : dielectric

−πr3

U
(ǫ0E

2
0 − µ0

2
H2) : metal

(D.3)

By mapping the longitudinal electric field and using Eq. E.1, the shunt
impedance can be calculated using

R

Qsphere

= − 1

2πω0r3ǫ0
[

∫

√

δω

ω0

cos (kz)dz]2 (D.4)
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D.2 BNL II - Alternate Design

A comparison of the broadband impedance spectrum for both longitudinal
and transverse modes calculated using ABCI are shown in Fig. D.1 for BNL
I, I-A and II designs as listed in Table 8.2. BNL I and I-A are essentially
similar in geometry accept for subtle change in the end cell. Therefore, the
impedance spectrum correspondingly looks similar. The spectrum for BNL

10-2

10-1

100

101

102

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

Z
 [k

Ω
]

Frequency [GHz]

Monopole Modes

TM010 BNL I
BNL I-A

BNL II

10-1

100

101

102

 0.8  1.2  1.6  2  2.4  2.8

Z
 [k

Ω
/m

]

Frequency [GHz]

Dipole Modes BNL I
BNL I-A

BNL II

Figure D.1: Broadband impedance for monopole and dipole modes computed
by ABCI for BNL I, I-A, and II designs.

II looks quite different for both monopole and dipole modes. For monopole
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modes, the impedance peaks seems to have shifted to a lower frequency but the
amplitude is similar to that of BNL I. In the case of dipole modes, the spectrum
for BNL II shows smaller impedance values for the 5th − 6th passbands, but
the larger for 2nd − 3rd and 8th − 10th passbands.

D.3 Bellow Shielding

Bellows are added on the beam pipe section of the five-cell cavity to allow
longitudinal and transverse motion during cool down, warm up, alignment and
transportation. The bellows are made of copper plated stainless steel. The
primary power losses in these bellows can occur from surface currents of the
fundamental mode and single bunch losses induced by the passage of beam.
The beam pipe transition and the cold to warm transition section is designed
to allow no more than 10 W of fundamental power being dissipated in bellow
section. A counter flow of He gas on the beam pipe acts as a heat exchanger
which is extracted out at 300 K.
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Figure D.2: A simple shielding mechanism for the bellows in the 5 K helium
region.

Two sets of bellows, one right after the Niobium-Stainless Steel transition
( 5 K) with and one before the transition to room temperature (300 K). Several
shielding mechanisms including capacitive finger were considered if shielding
was necessary to reduce further losses. Fig. D.2 shows a simple shielding
mechanism and a comparison of integrated loss factor is shown in Fig. D.3.
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Note that the rectangular bellows were taken as an approximation to the
elliptical bellows used in the cryomodule. It is clear that shielding suppress
the overall power loss by an order of magnitude, but the unshielded bellows
only contribute k|| = 3.8 × 10−2 which amounts to ≈ 10 W of power which is
quite small. To further reduce He losses, the bellow section in the 5 K region
maybe reduced to two convolutions.
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Figure D.3: A simple shielding mechanism for the bellows in the 5 K helium
region.
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Appendix E

1
2
-Cell SRF Gun

E.1 Loss Factor Correction for β < 1

The loss factors in section II B has been calculated for ultra relativistic
bunches through the gun. Since the gun will accelerate relatively long bunches
(1 cm) and has a fairly large beam pipe aperture (5 cm), the loss factors were
assumed to be an upper limit. Modal loss factors for β < 1 and β = 1 were
calculated using the analytical expression derived in Ref. [145] given by

k(β, σ) =
n
∑

n=1

ωnRs(β)

4Qn

e−(ωnσ

βc
)2 . (E.1)

where ωn and Rs/Qn are the frequency and the shunt impedance (accelerator
definition) of the nth mode respectively and σ is the bunch length. Fig. E.1
shows a comparison between analytical expression (β < 1, β = 1) and numer-
ical calculation (β = 1) using ABCI [124, 125] for modes below the cut-off
frequencies of the beam pipe for a bunch length of 1 cm. The loss factors are
clearly over estimated for β = 1 compared to β < 1. However, we use the
total loss factor calculated by ABCI as the upper limit since it is difficult to
analytically estimate the loss factor for modes above cut-off.

E.2 Amplitude and Phase Modulation

The effects of random fluctuations have been extensively studied in signal
processing theory. Several interesting models for random processes and its
effects can be found in Ref. [146]. We will assume that the beam harmon-
ics can be represented by an infinite train of pulses with a pulse shape p(t).
Any modulation of the laser amplitude and/or phase will manifest itself as a
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Figure E.1: Longitudinal loss factors computed for the first nine monopole
modes in the gun using Eq. E.1 for both β = 1 and β = 0.5. The analytical
calculation is also compared to the numerical calculation using ABCI.

modulation of the pulse train which can be expressed as

I(t) =
∞
∑

n=−∞
an p(t− nT0 − ǫn) (E.2)

where T0 is the average separation between the pulses. We will also assume
that the random variables an and ǫn are uncorrelated and follow some arbitrary
distribution function.

It is of interest to calculate the spectral power density (SPD) to determine
the characteristics of the modulated pulse train in the frequency domain. The
SPD along with the impedance spectrum of the cavity can be used to estimate
the HOM losses induced as a result of the modulation. The SPD can be
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Table E.1: Frequencies and R/Q values (accelerator definition) for the first
few monopole and dipole modes in the SRF gun.

Monopole Modes Dipole Modes
Freq [GHz] R/Q [Ω] Freq [GHz] R/Q [Ω]
0.703 96.5 1.01 53.8
1.49 55.8 1.71 10.7
2.25 8.4 1.88 11.7
2.34 48.7 2.05 2.1
2.56 10.3 2.44 0.4
2.80 13.0 2.64 6.3
2.99 33.1 3.06 0.05
3.13 2.2 3.08 3.5
3.36 19.2 3.43 2.2

determined from amplitude of the Fourier transform given by

P(ω) = lim
T→∞

1

2T
〈 |

T
∫

−T

I(t) eiωtdt|2 〉 (E.3)

= lim
N→∞

|p̂(ω)|2
2T0N

〈 |
n=N
∑

n=−N

an e
iω(nT0+ǫn)|2 〉 (E.4)

= lim
N→∞

|p̂(ω)|2
2T0N

×
∑

n,m

〈anam eiω[(n−m)T0+(ǫn−ǫm)] 〉 (E.5)

where p̂(ω) is the Fourier transform of the pulse shape. Since, an and ǫn
are uncorrelated

〈anam eiω(ǫn−ǫm)〉 = 〈an am〉〈eiω(ǫn−ǫm) 〉 (E.6)

For general uncorrelated amplitude modulation and time jitter, the char-



181

acteristic functions can be evaluated as

〈an am〉 = a2
0 + δn,mσ

2
a (E.7)

〈 eiω(ǫn−ǫm) 〉 = δn,m + (1 − δn,m)

× |
T0/2
∫

−T0/2

dǫf(ǫ)eiωǫ|2 (E.8)

= |f̂(ω)|2 + δn,m(1 − |f̂(ω)|2) (E.9)

where f̂(ω) is the integral in Eq. E.8.
Using change of variables (k = n−m), we can rewrite

n=N
∑

n=−N

m=N
∑

m=−N

F (n−m) =
k=2N
∑

k=−2N

F (k) (E.10)

× (2N + 1 − |k|) (E.11)

Therefore, using Eqs. E.5, E.7, and E.9, we can express the SPD in the
new variable as

P(ω) = lim
N→∞

a2
0|p̂(ω)|2
2T0N

∣

∣

∣

∣

f̂(ω)
sin [(N + 1/2)ωT0]

sin (ωT0/2)

∣

∣

∣

∣

2

+
|p̂(ω)|2
T0

[

a2
0(1 − |f̂(ω)|2) + σ2

a

]

(E.12)

Taking the limit, we find that

P(ω) =
2πa2

0|p̂(ω)|2
T 2

0

|f̂(ω)|2
∞
∑

k=−∞
δ

(

ω − 2πk

T0

)

+
|p̂(ω)|2
T0

[

a2
0

(

1 − |f̂(ω)|2
)

+ σ2
a

]

(E.13)

If the probability distribution f(ǫ) for the timing jitter is uniform or Gaus-
sian, the characteristic function can be easily evaluated and is given by

|f̂(ω)|2 =















[√
3 sin(ωσǫ)

(
√

3ωσǫ)

]2

, Uniform

e−(ωσǫ)2 , Gaussian.

(E.14)

where σǫ is the rms of ǫ.
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E.3 Voltage Estimates for Parasitic Modes

Let the longitudinal wake potential for the parasitic mode be W (t) with
W = 0 for t < 0. Any dependence on the beam’s transverse coordinates
are assumed to be included. Model the beam as a sequence of pulses with
normalized shape p(t), arrival times nT0 + ǫn and charges (1 + an)q. The
voltage on the beam due to this mode is then

V (t) = −q
∞
∑

n=−∞
(1 + an)Ŵ (t− nT0 − ǫn), (E.15)

≈ −q
∞
∑

n=−∞
(1 + an)Ŵ (t− nT0)

−ǫn(1 + an)
dŴ

dt
(t− nT0), (E.16)

where it has been assumed that the arrival time variation is short compared
to the time scale (oscillation period) of the wake field and we have defined

Ŵ (t) =

∫

dτW (t− τ)p(τ)dτ, (E.17)

as the smoothed wake potential for a single bunch.
Assume the simplest statistical model with 〈ǫn〉 = 〈an〉 = 0, 〈anam〉 =

σ2
aδm,n, 〈ǫnǫm〉 = σ2

ǫ δm,n, and 〈ǫnam〉 = 0. Also, assume a resonant wake field
with a large quality factor Qr, resonant frequency ωr with ωrστ ≪ 1, and
shunt impedance Rr. Then the expectation value of the voltage is

〈V (t)〉 = −
∞
∑

n=−∞
qŴ (t− nT0),

= −
∞
∑

k=−∞
(q/T0)Z(ωk)p̃(ωk)e

−iωkt, (E.18)

= −
∞
∑

k=−∞

q

T0

Rr

1 − iQr

(

ωk

ωr
− ωr

ωk

)

× p̃(ωk)e
−iωkt/T0 , (E.19)

where ωk = 2πk/T0,

p̂(ω) =

∞
∫

−∞

p(t)eiωtdt
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is the Fourier transform of the pulse shape and Z(ω) is the impedance of the
mode. The average voltage modifies the RF bucket and is a type of static
beam loading.

Now consider the variance of this parasitic voltage,

〈(V (t) − 〈V (t)〉)2〉 ≈ q2
∑

n

σ2
aŴ

2(t− nT0)

+σ2
ǫ

{

dŴ

dt
(t− nT0)

}2

(E.20)

≈ q2
(

σ2
a + ω2

rσ
2
ǫ

)

(

Rrωr

Qr

)2

× Qr

2ωrT0

|p̃(ωr)|2 (E.21)

where we have ignored terms proportional to σ2
aσ

2
ǫ and assumed that the band-

width of the parasitic resonance is narrow compared to the bunching frequency.
For a Gaussian pulse of rms duration σt one finds p̃(ω) = exp(−ω2σ2

t /2) so
Eq. E.21 predicts that high frequency parasitic modes are suppressed. It is
worthwhile to note that the dependence on the bunching frequency in equation
(E.21) is fairly weak. For T0ωr ≫ 1 the variance of the parasitic voltage is
unaffected by a detuning of order 1/T0.


